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In this paper we consider the problem of simultaneous approximation of a
subset F of a Banach space B by elements of another subset 5 C B. Results are
obtained on the existence, uniqueness, and characterization of best simultaneous
approximations.

1. INTRODUCTION

Several authors have studied the problem of simultaneous approximation.
Dunham [8], Diaz and McLaughlin [6.7J, Ling et al. [13, 14] considered
simultaneous Chebyshev approximation of two real-valued functions defined
on the interval [0, I]. The problem of a best simultaneous approximation of
two functions in abstract spaces and with respect to the (jJ norm, I 0(" P 00,

has been discussed by Phillips and Goel et al. in [10, II, 15]. The paper by
Holland et al. [12] deals with approximation of more than two functions and
with respect to the supremum norm. Simultaneous approximation of one
function but with several norms has been studied by Bacopoulos and his
collaborators [I ]-[5] and later by Dunham [9]. In particular [13, 14] appear
as generalizations of [3, 9].

The notion of simultaneous approximation is based on the following.
The space C(F, B) of continuous functions from a topological space F into

;1 Banach space B over the field k, where k, IR or k iC and FeB, contains
the vector subspace A of all affine mappings from F into B of the form
e(~,1,'U) ,\ ·f --:-- b, where bE Band ,\ E k. We use the notation (,\, b) for
the function e(A,b)'

Let I, be a norm in A. We assume that F has more than one element and
that

for some C1 E R and all bE B. (1)

It is easy to verify that assumption (l) onl' is equivalent to the following
property.
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An element s* E S, where S is a subset of B, i:- a best approximation in
I . in of an clement h C' B by clements of S if and only if (0, s*) is a best
approximation in i . ,L of (0. h) c A by elements of the subset {(O, S) ,c A :-Udl

thatsES: ofA.
A best . i csimu!taneous approximation of FeB by elements of S C B IS.

by definition. an element s* E S such that

inf :( 1.0)
scS

(1.0) (0. <.*)/

Examples of . !t. 11'hich sati4ies ( I). Let B ~.• L,,( 1'. md, I /). X. •

FeB and I' L,,(/'. mlJ, I 4 < oc. Assume that for every 1'cu,)

r (r "."
C(\ .II) " ,\ ' !(!) h(l) f' dmdt)) dllli(f) J .•nv)

. r ·r

respectively.

" (r
p,rl

eel,h)
I' f\ ' /(1) h(t)'i dIi1 2(f») dlJll(t) J,fo(VI

• T' F

(4)

Equation (3) (respectively (4)) defines a norm in A. For every b. B
1'IO.l,)'E(I,) Cl ' !, h ll ' 1'(fI,ll) lE(v) • where C1 (mAF))l"'-
The following construction generalizes the example of . 'tlv) given by (3),

COlis/ruction. We define a natural mapping Pn : CU: B) -+ C(F ~) by the
formula (p,/P)(f) ~'" ,i et>(fWB . Let V be a subspace of elF, IR) which contains

the functions PBelA,l,l for every eCU) " A and the function e(f) I. Let
'I . Iv be a norm on V

The norm . i,· is monotone if and only if for any two functions ,p and J,
from V the inequality 0 ,p{f) Vl(f) for every /E F implies rP I

: f! v· If the additional restriction rP ql implies ,p I iii I' then we
call [, . ; I strongly monotone.

It is easy to verify that for every monotone ,v the equation

(5)

defines a norm . HI} In A. Moreover. for every h ( B, e'IL,,1 HI)

C1 . :: h .If . vvhere C 1 (' ! I

RI!Jiwrk I. A direct generalization of ': 1(1') allows one to construct
examples of norms in 1/, Span PllfA) C OF. iR) with different properties of
monoton icity Namely.

assume th~lt: Ii,): >.,\ • wherc X i:- ~i topological space. is a Lunily 0"

pscudonorms in V such that for every,}, O.,p c f. the function f).I,\)

,: S~ 1(,) belongs tr. d vector suh'.pacc } of n.Y. iP() and is not identic':lly zer(1,
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It is easy to verify that for every monotone ii . lir In Y the equation

(6)

defines a norm in V.
It is easily checked that the monotonicity of!; . ::1'1,) for every:, E: X implies

the monotonicity of II . III'. ff, in addition, for every ,p, v; c: V such that
,p =fc if; and 0,':;; ,p(f) ~; 0/(/) for allfc:: Fthere exists an a E X with q,p 1["(,) "'_

Ii if; :~·(d and if II . Ill' is strongly monotone, then II . III' is strongly monotone.
The main features of this paper are

(I) characterization of a best: . [:/-simultaneous approximation of F
by elements of a closed subspace S C B (see Section 2);

(2) reduction of the :! .!i/.-simultaneous approximation for some i/-.
to an approximation of some single element c E: B (see Section 3);

(3) existence (see Section 4) and uniqueness (see Section 5) of a best
I:csimultaneous approximation under some very general assumptions:

(4) exhibition of circumstances under which 110l1uniqueness of a best
: I:(v)-simultaneous approximation takes place, provided B is a strictly

convex Banach space and [i· v is a strongly monotone norm (see Section 5);

(5) an example showing that uniqueness in Theorems 2.1 and 2.2 in
[11] docs not take place in the case of V (1 (see Section 5).

The author is most grateful to Professor B.N. Sahney for inviting him to
the University of Calgary in November 1975 and for the introduction to
new results in the area, which enabled the author to produce this paper. The
author would like to thank Ivan Kupka, Hugh Miller, and Rudi Mathon for
the help they gave in writing this paper Hugh Miller made a number of
useful observations on the original manuscript; in particular he pointed out
an error in the proof of statement (a) of Theorem 4 in the earlier version.

2. CHARACTERIZATION OF A BEST II . !IE-SIMULTANEOUS ApPROXIMATION OF

F BY ELB-1ENTS OF A CLOSED SUBSPACE S OF B

We shall make use of the following lemma.

LEMMA 2.1. (a) A is a complete topological space in the norm Ii . IE:

(b) For every f-L E k and v E: B* theformula q)(".v)(e(U» == f-L .,\ + v(b),
where e(u) E: A, defines a bounded linearfimctional on A,

I· m II / I I I ['I 'I CZ --;-- C~',¥( ) A*', f-L • -- - ',Z:. B*' ---'.', ".v [,', C
2

'" C
1

. Cz ' (7)
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Proof Note first that for A 0

(A, b)11o

Also

(9)

Assume C2 O. Let us choose a Cauchy sequence {(An, bn)}n>l in A. From
inequalities (8) and (9) it follows that {An}n)l and {bn}n)l are Cauchy sequences
in k and B, respectively. Let A· limn_A, An E k and b limn+a) bn E B. Sincc

( 10)

limn~oc itA, b) - (An' bn)LL =-'c O. Hence, the completion of A by . iL COIll-

cides with A. It remains to prove C2 O.
Suppose C2 O. For every E 0 the inequality L(I, --bJi,L ~ E,.i L 2,

implies I b1 --- b2 :S (2' E/Cl ). Using the completness of B we obtain

() {h to B such that :,ll, b),iE
(-,0

E'J (II)

Therefore there exists an s* c: B such that i,( L -S*),10 O. HenceJ- .I'" 0
for all fE F and, consequently, F is the one point set {s*}, which contradicts
our assumption that the cardinality of F is greater than I This proves C2 :> 0
and statement (a).

To prove inequality (7) let us mention that (8) implies

and (9) implies

(12)

.. b riBSup ---,--
lJEB 11(1, b)IIE

Therefore

( 13)

(14)

Combining estimates (12) and (14) we obtain (7).
The main result of this section is

THEOREM 1. Let S be a closed subspace of a Banach space B. Theil all
element s* E S is a best 'i . 'I,-simultaneous approximation ofF by S if and onlr
if there exists a functional l' E B* such that l'(s) 0 for every s E S
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and SUPbEB fL -: l'(b)'Ii:O, b)!IE '-'" I, where fL coo I, (1, -S*):!L'

C -I ' '('J ' fL I ') C1 ' C21:' ,t' ,iB' ,;:?- .-- -C-, . C --i-- C .
~2 i ~ I 3

227

/14arcover,

(IS)

Remark 2. When B is a strictly convex Banach space, S is a finite­
dimensional subspace of B, F ,U~ J~} C B and Ii . [!E c= il 'IUZ,,)' Theorem I
is a strengthening of Theorem 3.2 in [lOJ.

Proof of Theorem I. As an immediate consequence of Lemma 2.1 and
the well-known characterization of a best approximation of a point by a
closed subspace S of B (see page 18 in [16], Theorem 1.1) we obtain a func­
tional eJ>(".d E A* such that

(I) eJ>(",r)(c(o,,» 0 for every S E S;

(2) : <1\,.,)iA' " I;

(3) <p(".,)(C(l.o) -- e(o.,'») = ::(1, 0)- (0, S*)dE'

Therefore v(s) , 0 for every S E S, I, c;P(u.,'ll:A'= I and fL- fL - l'(s*) ,C

<p(".,)(eu_o) - c(o.,·)) c= il(l, - s*H, . To prove SUPIJEB I fL ,. v(b)(!' (l. b)liE =

I' eJ>(i-'.di:A' it remains to show that C j :;;; Ii V liB"
To prove C1 ?: :i v lin- we choose for every E > 0 an element de E B such

that' r(d,)- il v lB' ! < E and !I de lin 0= J. For every ;\ =Ie O! IL'- I'uf,/A)! --
IL -, (IIA) i v ]I R• il ,;: Eli A.'. The condition!i eJ>L, ,!' I implies

! fL + v(d)A.)! ,: fL + (lJA) : r ,8', - (E! A,)
[(I, dE/A.)] E ' - ----~(UA51;r-.-----,.

fL . A -r ' r lB' I ~ E

i (A., (7;5:-:£---' (16)

Therefore in (16), letting Aconverge to zero and using (10), we obta~n I ~;

(I leJ),! I' liB' -- (E(Cj ), and consequently Cj ?': ill' ! li* '

The remaining part of inequality (15) follows directly from inequality (7)

putting' <P c".-) !'~l' = I.

3. RWliCTION Of ;' . r:E-SIMULTANEOUS ApPROXIMATION fOR SOME I , :E TO
AN ApPROXIMATION OF SOME SINGLE ELEMENT C E B

The main result of this section is

THEOREM 2. Let .1'* be a best approximation of some single element
(' E B by elements of an S C B. An element .1'* is a best !i . liE-simultaneous
approximation of F by elements of S for every S C B if and only if

( 17)
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for all (A. h) r~ A and a norm ;'1' 111 [P;". which is strictly monotone as a
function of the second coordinate.

Remark 3. It is easy to verify that an element c (the center e(F) of F) in
Theorem 2 is uniquely determined hy F and . Lin A.

Remark 4. Assume that F Ul:j~;, I in B B (A eBB)
satisfies j,U; ·/~)!, :Ue .j;)! I for all U; ,f~) EBB. the center elF)
exists and that an clement s* of a be~t I-simultaneous approximation of
F by elements of S B is unique. Then c( F) ~U; .f~). I ndeed. an clement
c( F) is uniquely determined hy

Also. for c

(I. c(F))/ inf (I. I) f.
\'-'H

( 18)

(l. c) I (~U; j"),~(j2 i 1)) I

wou;·n I.Y/~-t1)--sh

(-I)'(~U; (~) I,K(~ 11) sFI:)

IOU;'/2) S_~(j~ (~) III

= 1iCI, - c + s)I!E' (19)

Therefore elF) e. This problem has been studied by Phillips and Sahney
in [15] in the case of a Hilbert space Band . iL([)-simultaneous approxi­
mation.

Prooj' oj' Theorem 2. The "if" part is easy. Assume elf) c B is the center
of FeB. Then ,'( I, s)iiL • S E B. is a strictly monotone function J) of
I s- c(Fl! n: i.e .. J I. . .1') il 'i}(;! .I' e(nB)' For every r 0 and a 0
we denote r . flair) by ~(r, a). Then. for every A =7~' 0 and dEB

,\ . (I, -elF)~ -t',. (0, d)] I A :( I" eF) _L (d;A))I" ~( A I, d 8)' (20)

Therefore ~( Ai, f1- ') :i( A 'fl-)I !'. where '1' is a norm in [Re.

Hence

,\ . (I, -elF») -- (0. h· A' C(F))i /

i( A I, b + A . e(F)UB)i p • (21 )

It is easy to check that the assumptions of Theorem 2 imply the striCl
monotonicity of 'p as a function of the second coordinate.

EXAMPLE I. Assume B is a Hilbert space, FeB, l/l is a measure on I
with m(F) Y-.C, and 1 Iv i. iL.,(F.III)' Then A is a Hilbert space in 't(v)

and the equality -

III ( F). e·-.I' B ( l. e)!~(v). (22)
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where c (l jm(F» , JFIdm(j), holds. Therefore c(F) c and . ip in 1R2 is
given by

III(F) . i fL ~ , (23)

In the case of F C.c U\;j~) and f71(j~) c, I!l(j~) Eq. (22) is a main tool in [15]
(see Remark 4).

EXA\-lPLE 2. Let B . L 1(T, nz) and FeB. Assume that for every (/\. h) E A

(1\. b) EU,) r SLIp I\,!( t) b(t)· dill (I )
~ T r"e:F

"Y.• (24)

Equation (24) defines a norm 'lEU) in A. It follows from ( I. O!:Ju tl

JT SUPtoF f(t)1 dm(t) < oc that the functions f- *(1) inft'CF 1(1) and
f*(t) SUPtEF!(t) belong to L1(T, JIl). We denote M(*I.') E B by c.
Using the identity max{ I a1 :; ! ae ] J (/1 ae :: ~: a\ - a2 • where ([1

and (/2 E R we obtain

(I, S),E(I,)CC r max{J.*(t) s(t); If, *(t) - s(l)',: (ill/(t)
• T

c . - S B" .! -f,*iH' (25)

Therefore c(F) = c and 'pin [R2 is given by

1(,1" f-L) II' c= i f-L -:- 4"1* - I * in' A . (26)

EXAMPLE 3. Let B = L 1(T, nz) and F c= {f,]OC;j(S-J C B. For every
a·'·= (a;)O<;<Sl EO IRs we define a* '''' (aj *)O<j<N 1 E [R'" by

and a/ :( ar/ for every 0 j q I. (27)

By CEO B we mean the function f,~N-J)(f) for odd N and a function c E B
such that I!.~V'l(t) <, c(t) I/N(t) for even N. Assume that S E B satisfies
/"~v J}l(t) - s(t) 'f'~V-J)l(t) for odd Nand f/!,V.l(t) s(t) /,*,(1) for
even N. Equations . .-

lor odd iV.

for even N.
(28)

hold. Therefore for'\ + 0 and h == (1(,\)' sEq. (17) holds, where
is given by

I' in [R2

.(A, f-L);p = f..L: "'(\, -c) ,£(I,) , 1\

i(,\, fL)!!p = i'( I, . c) EU,) . ,\

for odd N,

for even N.
(29)
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However it is easy to verify that Eqs. (28) and (29) do not hold for all
s E B. Hence the center c(F) of F does not exist.

EXAMPLE 4. Let B L ,,( T, 111), F {no<,,v .J C B and V /", I

P <A. We assume N to be odd for JI I. By '1((8) we mean the set of all
subsets 5 C B such that 5 _. {s r= 8 such that s(t) E DtL where {Dt}tET is a
fam ily of su bsets of JR;. The following statement allows one to reduce !j . 'J U ).

simultaneous approximation of F by elements of S E '1I(L)(1', m)) to' ~n
approximation of some single element e,,(F) E Lp(T, Ill).

PROPOSITION 3.1. There exists an element c,,(F) E L)( T, Ill). fJ Cf~

such rhat <111 element s" E L p(T, Ill) is a hesl :! - !I L Up)-silllllltal1eous approxima­
tion ofF hI' elements olan arbitrarv S E '1((L1)(1'. m» If and on/v iI's"" is a best
approximation o/c),(F) by elements 0(5.

In the proof of Proposition 3.1 we shall make use of the following

LE\l\lA 3.1. For erery a (aj)o; ..\ 1'= [)-P and .1:-0 IT~ let 4>/l(a. .I)
-V-.]

L~f1 a, s I'. -I fJ' ,-rio 4>y(a. .1') maxlI.i'- \ I a; - s .. nJe equalioJl

if}},- 4>/l(a. .I), l~c P"I :IJ.
,\.1'".

(30)

has a unique solution s,,(a) continuolls!v depending 011 a co G!1" and the jill/ctioll
4>,,(a. s) is a strict!\' monotonejill/ction oj s sp(a);.

Proof Assume I

fl_ I

Ii . (L a,~
1 fI

.I I' 1

\' ]

(31 )

1n particular, ((djd'i}(]\)(a.s) (2q ;V). Hencesl(a} a;(!vt)(N is odd)
and ([>\(a. s) is a strictly monotone function of S sl(a).

For I p < ,Xl ([>,,(a. s) as it function of s belongs to C2(JR;\U)~lIl ail and
((d2!ds2) <P,,)(a. s) p' (p I) '(PI' 2(a. s) . O. Hence Eq. (30) is equiv-
alent to ((d:ds) (P,,)(a. s,,(a)) 0 for I fi' 00 and the lemma is proved for
J /) - . x. For p y; the lemma follows from the equality

max! a" s : a~, s ~(a" ' a!~ J) s a,\' I .

ProololProposition 3.1. Let (cl'(F))(t) s,,(U;*(t))"<j\ 1)' The functions
f; *(1) belong to L ,,( T, m). c ,,( F) is measurable andf.l*(t) <~ (cj/( F»(I) <f~ l(f)

for I . fi' r,G'. Hence (',,(F) cO L p ( T, 111).

For every Sj ands:!E !_,,(T.m)weplIts:\(t) .l'j(l)inGhe .I',(t)·-',,{F)(t)

: s:!({) c/F)(t)· and we PlItl)t) sp) for othn r r= T Assume SI: Sf ~\l1d
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-":1 ,'.. .1'2' Then, using the strict monotonicity of <:P p(a, .1') as a function of
.I' s1'(a) , we obtain

(32)
min 1:( 1,0) -- (0, .1';) E(z) .
/,1,2' ','

Proposition 3.1 follows immediately from inequalities (32).

Remark 5. Let us mention that c[(F) f~~N-l) and c,(F):h./;/ f~YrJ.

4. EXISTENCE OF A BEST ;. '!IE-SI\1ULTANEOUS ApPROX/\1ATION

The following notions are important for the problem of existence of a best
.. rsimultaneous approximation.
The weak topology induced on a Banach space B by a set ~·V of continuous

linear functionals on B we call the W-topology.
We call a subset S of B locally W-compact if and only if the intersection

of S with every ball in B is W-compact.
We call a subset S of B W-nice if and only if the intersection of eve:'Y

closed convex subset of B with S is closed in the IY-topology.
We use the notation SpanS for the closure of the linear hull of S C B. By

id: SpanS -.,> B we mean the identity operator.

Examples 0/ Locally W-Compact alld W-Nice Suhsets 0/ B. Every closed
convex subset ora Banach space B is closed in the IV-topology with W B".

because every convex closed set DeB and point b ec B\D arc separable by a
bounded linear functional z; Co B'" [17, p. 58]. if X is a Banach space, then
B )(* is locally H"-compact with W XC X"i B* [17, p. 66]. There­
fore in every reflexive Banach space B every ball is B'--com p'lCt. Abc·. every
compact subset in B is W-compact. Hence, a set S is locally W-compacl and
W-nice if:

(I) S is closed in the W-topology, id "UV) (SpanS)* and SpanS is a
reflexive Banach space (for example, SpanS is a uniformly convex i3anach
,pace). In particular SpanS c -- LjF, m), where I < P < 0::';

(2) S is a locally compact subset of B in the . ill topology and the IV·
topology is I-Iausdorff Oil S.

Remark 6. Let J: B --~ A be the natured embedding,.Jb e(o.v) . Due to
( 1) .J is an isometry modulo multiplication by a c()llstant C 1 . The mapping
J *: A > -~ B* is the restriction of f/J EC A x to Band J*( W') C W, where
~I" (}l') I (W). The Hahn-Banach cxtemion theorem implies J"'( ~V') H/.
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Therefore J: B-~ J(B) considered as a mapping from B in the W-topology
into J(B) in the W'-topology is a homeomorphism.

We shall make usc of the following

LEMMA 4.1. Lei S he a locally W-compact and W-nice subset of B. Then
the subseT J( S) o{ A is locallv W' -compacT, where W' (]*) -I ( W).

Proof, Let us mention first of all that the intersection of a ball D, in A of a
radius,. and center (A. d) E A with J( B) is a convex closed subset of J( B).
Using Remark 6 and the fact that S is a W-nice subset of B we obtain that
Jl(Dr"J(B)) is a convex closed subset of Band j-I(D,,,l(S»

J I(D r " l(B)) " S is a closed set in the ~V-topol()gy.

In addition, the inequality

I' (A, d)- (0, xJ, c. ,(0, x)r :(A, dJl.r
C1 . !! X is .. 1 A I . CO! , __ I d I'B . Cj (33)

implies that the intersection D,,, J(B) is a bounded subset of J{B) for every
I' a and (A, d) cA.

Now the W-cornpactness of Jl(D, " J(5)) follows from the inclusion

(34)

where R R(r,.\, d) (I': j ,\ i . Ca);C; i di:u and DR(B) is a ball of
radius R and center 0 in B, and from the closedness of J.I( D, " l(S)) in the
W-topology. Hence. llsing Remark 6, D, ,,1(5) is W'-compact.

The main result of this section is

THEOREM 3. LeT 5 be a locally W-compact and W-nice subset of a Banach
space B. Then for every FeB and Ii . ,i/O satisf)Jing (1) there exists a best . I!e
simultaneous approximaTion ofF by elements of5.

Remark 7. Theorem 3 is a generalization of Lemma 2.2 and Proposi­
tion 4.1 in [10] and Theorems I and 2 in [12] about the existence of a best
I . le(( )·simultaneous approximation in the case when F is a compact. The
restrictions on Band 5 in [J 0, 12] are: B is a strictly convex Banach space
and 5 is a finite-dimensional subspace of B, or B is a uniformly convex
Banach space and 5 is a closed convex set.

Proof To prove Theorem 3 we consider the intersections with 1(S) of
balls in A of radius I' and center (I, 0). For every I' > infs~.\ 110,0) -- (0, S)II;:

.' 1'0, the set Dr " J(5) c;lc and is W'-compact (see Lemma 4.1).
Therefore the intersection

u n (Dr" J(S»)c ;'.
f>ru

(35)
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To complete the proof it is enough to mention that every point of U C J(S)
considered as a point of S realizes a best II 'If:-simultaneous approximation
of F by elements of S.

5. UNIQUENESS OF A BEST i 'iE(v)-SIMULTANEOUS ApPROXIMATION

The following example is typical for nonuniqueness of a best I . !'lo(vl-

simultaneous approximation, provided B is a strictly convex Banach space,
S is a convex subset of B, and . v is a strongly monotone norm.

EXAMPLE. Let V = LI(F, m) and B be a strictly convex Banach space.
Assume the following.

C.l. For some bl b" , bl and b2 from B, F - F l U F2 • where f~ C
11 {b E B I :Jx E IR, (X ~ 1 such that b =c l1: • b1 -i-- (I -- C't) . b2}, F2 C 12
{b r:: B: :J ,x E R ex ~ 0 such that b ex' hI +- (I ~x) . l)2]' We use the
notation 1 {b E B i :b E IR, such that h ~~x . b1 !- (I - ;x) . l)2] and I
/',(11 U (2),

Assume m(f~) .= m(F2). Then the function q;(b) cc q( 1, --bh,(v) is constant
on I.

Remark 8. The above example for f; ~= U~} and f~ U;} contradicts
Theorems 2.1 and 2.2 in [ll] in the case of V 0= IJ •

The following examples illustrate notions which are important for the
problem of uniqueness of a best !I 'It(v)-simultaneous approximation.

EXAMPLE OF STRONG MONOTONICITY. The LiF, m)-norm, J'e( p < 00, is
it strongJy monotone norm jf and only if the support of the measure In is
equal to F.

DEFINITION. The norm II '111' is strictly monotone on Vat a point q; E V if
and only if for every l/J E V the inequality 0 ;,::; q;(f) < l/JU) for all f E F
implies II q; l'v < Ill/J III" II '111' is strictly monotone if it is strictly monotone
on Vat every point q; E V.

EXA\1PLE OF STRICT MONOTONICITY. It is easily checked that the supre­
mum norm is a strictly monotone norm if and only ifF is compact. Moreover,
if F is not compact, but for every b E B there exists f' E F such that Ii f' +­
b li8 = SUPJEF Ii! +- b liB, then :1'111' is strictly monotone on V at every
point q; E PB(A). If the supremum norm is strictly monotone on Vat every
point q; E Pn(A), then the following condition holds.
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C.2. For every cP; EPB(A),j 1,2,3, with II cPll,V ,j cP:>. iiV I cPa ~

and L'tERO<a:.< I, such that 0 cPJ(f) Lt'cPl(f),(l-iX)'cP2Cn
for allfE F. there exists/' E F satisfying cPI(f') cP:>.cn cPa(/')·

Indeed, strict monotonicity of i' V on Vat every point cP E PB(A) implies
the existence of ant E F such that

Sup cP3(/)
IeF

(1 v), cP:!.Cf')

( I \') . Sup I cP:!.(/)
hF

(36)

Therefore, using! cPl.1 I. cPt'vi cP;, IIv, we obtain cPa(f') ct' cPICf') -
(I [Y) . cPkf') and. moreover, cPJ/') cP; i 1 • j I. 2. 3: i.e .. cPl(/')
cP2(n"" cP:;(f ').

Condition C.2 also holds in the following two examples.

(I) I· I' is strictly monotone and strictly convex. 111 particular the
LD(f~ 111) norm, where I <, P < ce.

Using the eXistence of rEF such that cP;ICI')
and the equality cPI cP:!. (othcrwise \' cP[ 1
Ii 0': • cPI -~-- ( I \) . cP:>. ,- i\' cf) I 1 - ( I

cP2(f') cP,:((')·

'cPl(/') (1-

(I v) ¢:!. I'

cP" 1,1 we obtain

y) ¢:!.(j')

¢,: "
4'1(/')

(2) ,f is the Ll(f~ Ill) norm, the support of the measurc ill is equal
to F and F is a conneckd subset of B.

The strong Il1onotonicity of 1'1(["''') Illlplies that for L'lcry/c r (b'lcn
,y . ¢tCn (I i'\') . ¢:>.(f). The continuity of eP;C/), j I. 2. and the
connectivity of F imply the existence of an rEF such that r/J[tf') (,h:>.(j')
(otherwise either ePIC/) < cP:>.(f) for al! F(,r J,ll! ¢l(f) for aUft-. F. So
in both cases' d>1 il / .1>:!. ,.). Hence qJtU') rP:>.(/') sl,if').

We shall make usc of the following

LEMMA 5.1. (,:) Let B be a strictly conuex Banach space and I' v be a
strongly monotone flOI'm. It' the function 1>(17) :,(1, - b)::I:(v) is not strictly
convex on B, then C.l holds and 1> is strict{y com'ex 011 B'}. /\-1oreorer, (p is
linear on 1. It' V is a strictly convex Banach space, then A is strictlv COI1UC.\.

(b) Let B be a strict{)' convex Banach space al1d . Iv be a monotone
norm. Assume C.2hold~. Thenfor every r 0 thefunction cP(b) !(1, h):,(r)
is stricth' CO/ICCX on Sr - {b E B I <p(b) r: C B, i.e., r/J(,x . hI (1 x) . be)
<: ex . <PUll} (I ,y) . 1J(!Je), 0 < \" .: I, lor every hi / b~, hi aad /1 2

(rom Sf"
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Proof of Slalemenl (a). For evcryx. fJ E k and bJ E B,jo~ I, 2, the
inequalities

! Pn(et( L --171 ) ., fJ(I,-b 2lWv
'x, . Ps((I, -171» +- fJ!' PII((l, '-b2»llv
I., • (I, -b1bu) --! 13 i .I(l, - b2):I(v)

(37)
follow from the monotonicity of ~- .

Assume that function ¢ is not strictly convex on B; I.e., thm there
exists :I: E 1Ft 0 < 0' < I, h[ and 172 from B. 171 172 such that

(38)

Then setting fJ ,~ I --:I: in (37) and using the strong monotonicity of
we obtain

T'

y' f b1 i ll-,(l ,,) , f·- (e ' hI -I (I -- i\.) . 17 2 is (39)

for cveryfc F. Therefore for everyf E F there exists fLf c k such that

or (40)

(P.f T I as 17 1 ''/~ 172 ), Since i\' fl"f -- (! ex) = . (\ . v! (1- (\)! (by
substituting (40) into (39», fLf is real and positive. Putting Ef (I/O l.Lf»
we obtain / fr' 171 -:- (I -- Ef) - bt . Ei 1 or E, O. Hcnce C.l holds
with

and (41)

Notice that the equation xi!. --171) (I --- x)( I. b:J;iU)

\. ' I( 1,-b1)1/(v) -+- (I -,y). i (I, b2 b(v) coincides with (38). Therefore, using
the triangle inequality for l' . :IE(V) • we obtain (38) for all 0 .y' I. Hence
¢(b) is linear on l. We have deduced from (38) that the clements of f~

lJ1 b1 , and 62 =-, b2 belong to the same real linc 1 in B. Hence (38) holds
only if bj E l,j =_c 1,2. This proves strict convexity of ¢(b) on H'/.

Assume now that I' 'j' is strongly monotone and strictly convex, Let

Using (42), the strict convexity of I' . ':v and

1!(A1 , dl) . i· (A2 , d2)i!LU') I! PS((/\ , dl ) -+- (A2 , d2mv
Ps((A I • d l » ..L Ps((A2 , d2)Ylv (43)

'i(A1 ' d\)!'E(V) -+ I!(/\ , d"b(l)
we obtain
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for every I E F. Since, ,8 is strictly convex, for every I E F there exists J-Lf c k
such that

or (45)

Since I iLl I iLl' I, iLl is real and positive. Also, the strict convexity
of il . !:v implies the existence of v EO lR such that either
HAd· dji/l I" AJ· d~!HforallfcForA2/ d~ OforalllcF. (46)
Combining (45) and (46) we obtain that either (AI' dd and (A2 , d~) are
linearly dependent or the cardinality of F is I. The latter contradicts our
assumption that F is not a one point subset of B. This proves statement (a).

Proof' olStatement (b). Assume that the function ~ is not strictly convex
on S,: i.e., there exist .Y': R. 0, 1. hi and b~ in B, hI h~ such that (38)
takes place and r ~(bl) ~(h~). Let ~ln l h, H' i l. 2. and
~:ICn r - (\ .hJ · (1\) . h~ II' Then

I ~ • ~(Y . hI ,
(I \) . h 2 ) ~(hj) 1)) .i l. 2,Ii :l'V v, --

and (47)

0 ~3U) \:'~ln (I ,) . (b~(j).

Applying C.2 we find f' EO F such that

O<!X I.
(48)

Therefore, using strict convexity of! . I Ii • wc obtain ,I f hI!" I f' -- h'!.
hence hi bz , which contradicts our assumption. This proves lemma 5.1.

The main result of this section is

THEORE\! 4. Let S be a convex subset ala strictly COi/rex Banach space B.

(a) Ill' 'Iv is strongly monotone norm, then for every FC B either the
set S* at all best I, . i11,(~·)-simultaneous approximations of F by S is a one point
subset ofS or .')'* is an interval and C.l holds with S* = T U {bl ; b2;.

(b) Ill!' Iv is monotone and C.2 holds, thenIor ever)' FC B there exists
at most one best i. ',IEuysimliltaneolls approximation at F by elements of S.

Remark 9. Statement (b) of Theorem 4 is a generalization of
Propositions 3.1 and 4.1 in [10], Theorems 1 and 2 in (12] and Theorems 2.1
and 2.2 in [11] (see Remark 8) about uniqueness of a best Ii' ,rUT

simultaneous approximation of F by elements of S in the case when F is
compact and II . Ill' is the supremum norm (in [12]), or F is a two point subset
of B and V···· t" (with 1 p < oc in [1 J] and p • Cf) in [10]). The restric­
tions on Band S in [10-12] are: B is a strictly convex Banach space and S is a
finite-dimensional subspace of B. or B is a uniformly convex Banach space
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and 5 is a closed convex subset of B. Our assumptions on Band 5 allow B
to be a strictly convex Banach space and 5 to be a convex subset of B.

Proof of Theorem 4. To prove Theorem 4 it is enough to mention that
the strict convexity of the function <p(b)·· c I( 1,0) .- (0, b)l/(v) on 5,. c

{b B eP(b)cc r} and the convexity of 5 imply the existence of at most one
best approximation of (l, 0) by elements of the convex subset liS) of A.
Hence. statement (b) follows from Lemma 5.1 (b).

To prove statement (a) assume S' contains two clements b] and b"2'
h] 17"2' Then <p is not strictly convex (because b eX• • bI;· (I 1.) . b"2
E5,' for all x ° 0' Land (p(c,<·h 1 ·(I,.)·b2) '(·<p(bj)·L

(It) <p(b~) inf'ES eP(s) <p(c,. 17 1 . (Ix)' b"2) imply Eg. (38)).
Therefore (see Lemma 5.I(a») condition (',1 holds, q, is strictly convex on
B\!, and 1> is constant on I. Moreover, 6; hi E l.j 1,2 (see (41)) Hence
.S* C l. Since S* is convex together with S, S* is an interval. Choosing 17 1 and
11"2 to be the ends of S* we obtain S* J u:6] ; 6"2:'
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