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In this paper we consider the problem of simultancous approximation of a
subset F of a Banach space B by elements of another subset S C B. Results are
obtained on the existence, uniqueness, and characterization of best simultaneous
approximations.

1. INTRODUCTION

Several authors have studied the problem of simultaneous approximation.
Dunham (8], Diaz and McLaughlin [6, 7], Ling er al. [13, 14] considered
simultaneous Chebyshev approximation of two real-valued functions defined
on the interval [0, 1]. The problem of a best simultaneous approximation of
two functions in abstract spaces and with respect to the /, norm, | < p < oo,
has been discussed by Phillips and Goel ef a/. in [10, 11, 15]. The paper by
Holland e al. [12] deals with approximation of more than two functions and
with respect to the supremum norm. Simultaneous approximation of one
function but with several norms has been studied by Bacopoulos and his
collaborators [I]-[5] and later by Dunham [9]. In particular [13, 14] appear
as generalizations of {3, 9].

The notion of simultaneous approximation is based on the following,

The space C(F. B) of continuous functions from a topological space £ into
a Banach space B over the field 4. where & = Rork - Cand #C B, contains
the vector subspace A of all affine mappings from £ into B of the form
el f) A-f = b, where be B and A e k. We use the notation (A, b) for
the function ey, ;).

Let! - i be a norm in 4. We assume that F has more than one element and
that

O DY == C, - b s for some C, € R and all b= B. (H

It is easy to verify that assumption (1) on | - I, 1s equivalent to the following
property.
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An element s* € S, where S ts a subset of B, is a best approximation in
|- iy of an element b & B by clements of S if and only if (0, s*) is a best
approximation in | - ., of (0, b) ¢ A by elements of the subset {(0, 5) £ A such
that s € S! of A.

A best | - | -simultaneous approximation of £ C B by elements of S C B is.
by definition, an element s* .5 such that

.'\_gér_ 1,0y (0. 9)is L0y (0, 5%y, (2}

Examples of - i which satisfies (1). Let B = L (T.my). 1 p- =.
FCBand V- LJ(Ff my), 1« ¢ <. oc. Assume that for every e, )

ooy

Covm . En) L l’z Ay - by (/fm(f)) anl ) - o 13)

respectively,

P

ClLa R J‘r l'[ A bl (/mz(f)) don(t) - . (4)

Equation (3} {respectively (4)) defines a norm in 4. For every b« B
Cewa ety Croith g ceqm ey, where Gy (ma(F))
The following construction generalizes the example of ' - i, given by (3).

Construction. We define a natural mapping py : C(F, B) — C(F. R) by the
formula (p,@)(f) = | D(f)iz . Let ¥ be a subspace of C(F, R) which contains
the functions pgeq ) for every e, & 4 and the function e(f) 1. Let
41, be a norm on V.

The norm - [} is monotone it and only if for any two functions ¢ and
from V' the inequality 0 <. @(f) == () for cvery /e F implies . ¢
I If the additional restriction ¢ - & implies ! ¢ il;- <~ 1 oL then we

call i - i, strongly monotone.
1t 1s easy to verify that for every monotone - - ;- the equation

COMiEG) - T PRE G i € A (3)
defines a norm - - ;, in A, Moreover. for cvery b & B ey
Cy-%h y.owhere Cp - ety

Rewiark 1. A direct generalization of . - allows one to construct

examples of norms in ¥ : - Span pyt A) C CtF. R) with different properties of
monotonicity Namely.

assume that {0+ 1., . where X i a topological space. is a famuly of
pseudonorms in ¥ such that for every ¢ - 0. ¢ ¢ I the tunction p.a)
1&g beiongs to a vector subspace P oof CLX. By and is not identicaly zero.
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It is easy to verify that for every monotone | !} in Y the eguation

1y ==l pslly {6)

defines a norm in V.

It is easily checked that the monotonicity of I - 1i,.(,, for every ~ € X implies
the monotonicity of || - [{, . If, in addition, for every ¢, s ¢} such that
¢ == pand O = S(f) < f(f) forall fe Fthereexists an a € X with § $ 1) <
i and i} - iy ts strongly monotone, then || - [ is strongly monotone.

The main features of this paper are

(Iy characterization of a best | - i,-simultaneous approximation of F
by elements of a closed subspace S C B (see Section 2);
(2) reduction of the ! - l'y-simultaneous approximation for some * - g
to an approximation of some single element ¢ € B (see Section 3);
{3) existence (see Section 4) and uniqueness (see Section 5) of a best
lir-simultanecus approximation under some very general assumptions:
(4) exhibition of circumstances under which nonuniqueness of a best
{e(my-simultaneous approximation takes place, provided B is i strictly
convex Banach space and || - |, is a strongly monotone norm (see Section 5);
(5) an example showing that uniqueness in Theorems 2.1 and 2.2 in
[11] does not take place in the case of V' -~ /] (see Section 5).

The author is most grateful to Professor B.N. Sahney for inviting him to
the University of Calgary in November 1975 and for the introduction to
new results in the area, which enabled the author to produce this paper. The
author would like to thank Ivan Kupka, Hugh Miller, and Rudi Mathon for
the help they gave in writing this paper Hugh Miller made a number of
useful observations on the original manuscript; in particular he pointed out
an error in the proof of statement (a) of Theorem 4 in the earlier version.

2. CHARACTERIZATION OF A BEST | - lz-SIMULTANEOUS APPROXIMATION OF
F BY ELEMENTS OF A CLOSED SUBSPACE S OF B

We shall make use of the following lemma.

Lemma 2.1. (a) A is a complete topological space in the norm || - |g;

(b) For every p €k and v € B* the formula @, ,(ex.n) == p * A -+ v(b),
where e ) € A, defines a bounded linear functional on A,

C-) *“‘ Cg

D e ] e ™

C, GG
where Cy = infyp (1, D) and Cy == (1. 0N .
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Proof Note first that for A = 0

D) A L BN AL G (8)

Also
Gy iblg OB < WA D) = AL Gy (9)

Assume C, > 0. Let us choose a Cauchy sequence {(A,, , 8,)}n>1 in 4. From
inequalities (8) and (9) it follows that {A,},.... and {b,,},.>1 are Cauchy sequences
in k and B, respectively. Let A - lim,_. A, €k and b = lim,_., b, € B. Since

1(’\' b) o (‘\n s b'n){‘L = C:l i A ’\n - Cl ' H b bn HB B ”0)

Hm,. (A B) — (A, . b))l == 0. Hence, the completion of 4 by | -, coin-
cides with A. It remains to prove C, > 0.

Suppose C, - = 0. For every € = 0 the inequality (1, —&)ip = €, j = 1. 2.
implies | by — b, i = (2 - €/Cy). Using the completness of B we obtain

(Y {h e Bsuch that (1,  H)ip <l el . {11)
€0
Therefore there exists an s* ¢ Bsuch that (1. —s%), - 0. Hence,f — s .. 0
for all f'€ Fand, consequently, £ 1s the one point set {s*}, which contradicts
our assumption that the cardinality of £ 1s greater than 1 This proves C, > 0
and statement (a).
To prove inequality (7) let us mention that (8) implies
D gy i (1CY) (12)

and (9) implies

Lhls Ag:{‘ :

C, -+ Gy

)
R 1 S S N SUp e o 2L 13
SRR 6 e PTG -G (3)
Therefore
: I ,liﬁ@ il gﬁ_;g 1)
P e = S g Ty  HebeTarme (e

Combining estimates (12) and (14) we obtain (7).
The main result of this section is

THEOREM 1. Let S be a closed subspace of a Banach space B. Then an
element s* ¢ S is a best ', - i -simultaneous approximation of F by S if and onlv
if there exists a functional v € B* such that v(s) -+ O for every s € §
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and  supyep ' p - v(B) i1, BYile = 1, where p ==| (1, ~s*)x. Moreover,

iy GG
&l e (13)

Cl »;.t I A iB* ,) (] -

Remark 2. When B is a strictly convex Banach space, S is a finite-

dimensional subspace of B, £ - {fi; fo} C Band !l [z =1 {pq,). Theorem I
is a strengthening of Theorem 3.2 in [10].

Proof of Theorem 1. As an immediate consequence of Lemma 2.1 and
the well-known characterization of a best approximation of a point by a
closed subspace S of B (see page 18 in [16], Theorem [.1) we obtain a func-
tional D, ,y € A* such that

(1) Dpleq.y) = 0 for every se S;
(2) Pl == 1t
(3) Piafeqn — €)= i1, 0) ~ (0, s¥)jie .

Therefore v(s) = 0 for every s€ 8, @yl =1 and g - p — v(s*) - =
D, leqa — ) == (1, — %) . To prove supuey | i+ - 2(b)/I' (1. b)ig =
P Dy, oiige 1t Temains to show that C; 2= | v {lps.

To prove C| == vz we choase for every € > 0 an element d, e B such
that “o(d) — | el | < eand || d.{l; = 1. Forevery A == 01} p -+ o(d A} —
fu - AHAY ol t <3 €/ AL The condition | @, /. == | implies

[l i e (YN e (e A
LA WL dN
A el — e
’ TN, ) g (16)

Therefore in (16), letting A converge to zero and using (10), we obtain 1 ;=
(1/CY v llye — (€/Cy), and consequently C; =il e .

The remaining part of inequality (15) follows directly from inequality (7}
putting ! D¢, 31 = 1.

3. REDUCTION OF ! - I'z-SIMULTANEOUS APPROXIMATION FOR SOME ' ‘'z TO
AN APPROXIMATION OF SOME SINGLE ELEMENT ¢ € B

The main result of this section is
THEOREM 2. Let s* be a best approximation of some single element

c € B by elements of an SC B. An element s* is a best || * |l.-simultaneous
approximation of F by elements of S for every S C Bif and only if

DN A E A el a7

640'20/2-0
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for all (A.h)e A and a norm 4, in &, which is strictly monotone as a
function of the second coardinate.

Remark 3. 11 1s casy to verify that an element ¢ (the center ¢(F) of F)in
Theorem 2 is uniquely determined by Fand - "p 1n 4.

Remark 4. Assume that £ - {fiifs;. ., in B& B(ACB I B)
satisfies (/) . /o)l - UL D for all (f.fy) e B &2 B, the center c¢(fF)
exists and that an efement s* of a best - -simultaneous approximation of
F by elements of S - Bis unique. Then e(£) -~ }(f, - /5). Indeed. an clement
c(F) is uniquely determined by

(1. ¢(F)) it (1. s) g (18)

e B

Also. for ¢ 3/ 1)

S (P 1 PR SYNE T A 49 ) )
AU =S = s M= ) =)
(1) (S L) s M fa = 1) - s)e)
A ) So i )~ s)y
=1, — ¢ + )l - (19)

Therefore ¢(F) ~ ¢. This problem bas been studied by Phillips and Sahney
in [15] in the case of a Hilbert space B and = - I )-simultaneous approxi-
mation. A

Proof of Theorem 2. The “it™" part ts easy. Assume o(F) ¢ B is the center
of FCB. Then "), - s).se B is a strictly monotone function ¢ of
18— c(Fig: e Al =9l - is - (F)ip). For every r >0 and a - 0
we denote r - ya'r) by fi(r, a). Then. for every A = Oand d € B

AL —F) 40, d) = A (] eF) S (diA)y = 1/3(‘ ALidig. (20)

Therefore i Af. g ) == i A , g ),. where - , is a norm in [
Hence
AP o AL, —clF)) = (0.~ A clFY) g
== i )\:‘,\ b “\L’)\'('(f:)jlg)“p‘ (21)

It is easy to check that the assumptions of Theorem 2 imply the strict
monotonicity of -, as a function of the second coordinate.

ExampLE 1. Assume B is a Hilbert space, FC B, m Is a measure on /-

with m(F) < oc,and | - I, - Vi g0 Then A is a Hilbert space in | - .,
and the equality

(I, Vg - m(Fy ¢ —5 % - (L —e)igm . (22)
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where ¢ == (1 F)) - [¢ fdm(f), holds. Therefore ¢{F) = cand  -j,in R¥is
given by

A @i mF) et (=) AR (23)

In the case of F == { /i1 /o) and m( f;) = m(f,) Eq. (22) is a main teol in [15]
(seec Remark 4).

Exavpre 2. Let B - L{(T. m)and F C B. Assume that forevery (A, h) e 4

(A b) e,y | sup A-fu) o B0 ditr) - o (24)
*T sefF
Equation (24) defines a norm - g ) In A. It follows from (I, 0),.q) =~
Jrsupser ! f(0)l dm(t) < oo that the functions /_*(r) inf,pf(s) and
¥ty - supser f(2) belong to L,(T, m). We denote $(/_* - f.*)ye B by c.
Using the identity max{| a; 5 'a, § = L o, +—a,' -1 Lia, —a, . where ay
and @, € R, we obtain

(L.~ $)ea, = J‘T maxi, f() o) 5 1SR — sl dinde)
S I IR A (25)
Therefore ¢(F) = ¢ and | - ' in R? is given by
WA e = i = 307 = [ %ip e A (26)

ExampLE 3. Let B = L{(T,nm) and F ={f}¢<;un1 CB. For every
a = (d;)oion1 € RY we define @* = (a,")y5cv 1 € RY by

a*=a,y and @ Ca” foreveryO = j:lqg o Noo 1. (Q27)

By ¢ € B we mean the function f%y_,)(r) for odd N and a function ce B
such that 5, (1) < c(r) = f5(1) for even N. Assume that se B satisfies
Fiiy voale) <Uste) < flv () for odd N and FRn) - stny =L fR for
even N. Equations

(1, *S)iig(zl) = (1, ey + e — 5ip for odd .
, i (28)
i, =$)leqy - L ol eqp for even N.

hold. Therefore for A = 0 and b == (1/A) - s Eq. (17) holds, where - , in R?
1s given by

.;()\, ,LL)'[P = P~| o U, 7(')»EE(L‘) P\ for odd N,

2
A w)ilp = (L =) gy - T A for even A, (29)
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However it is easy to verify that Egs. (28) and (29) do not hold for ail
s € B. Hence the center o F) of £ does not exist.

Exampre 4. Let B: L T.m), F {fiecinaCBand V7, .|
P+ 20, We assume N to be odd for p =« 1. By U(B) we mean the set of all
subsets S C B such that S = {s& B such that s(f)e D;}, where {D}.r Is a
family of subsets of R. The following statement allows one to reduce | - i, -
simultaneous approximation of F by elements of SeW(L (T, m)) to an
approximation of some single element ¢ (F)e L (T, m).

ProrositioN 3.1 There exists an element ¢ (Fye L (T, m). 1 _ p o
such that an element s* € L (T. m) is a best | - %ilg(zy)-Sl'l)IlllfaII(JOL{S approxima-
tion of F by elements of an arbitrary S € WL (T, m)} if and only if s* is a best
approximation of ¢ (F) by elements of S.

In the proof of Proposition 3.1 we shall make use of the following

\EAE'\NA 30, For oevery a  (a)y v < BY and s R et D fa.s) =
S -5 P pe o Dolas) - maXgoe s @ 8. The equation

D (a. s, (a) 1‘151! D (a. 5), | L ps. x. (30)

has a unigue solution s (a) continuousty depending on a € RY and the function
D (a. 5) is a strictly monotone function of s - - s, (a) .

Proof.  Assume | = p <. wand @) | -~ s -2 a,” Then

g- 1 N1

(dids) D Na. s) - /)~(Z a” gt D TR ’). (31)

0 ia

In particular, {(dids)y @ Ma, s) - (2¢ N} Hence sila)  ain. p (N is odd)
and D,(a. 5) is a strictly monotone function of | 5 - sy(a) . '

For 1 - p . 20D a, s)as a function of 5 belongs to CZ(R\.,U}»\:O' a;) and
({d?ds®) D Wa.s) -=p-(p 1)@, oa,s) 0. Hence Eq.(30) is equiv-
alent to ((dids)y @ Na.s (a)) Ofor | « p - oo and the lemma is proved for
I p -2 = Forp - > the lemma follows trom the equality

max{’ a,” sTUian o s e May o ako) s YiayT e an .

Proof of Proposition 3.1.  Let (¢, (FItY  s,0/7%(t)acs ~. 1) The functions
Ji¥(r)ybelong to L (T, m)., ¢ (F)is measurable and f,*(¢) <7 (¢ (FN) <2 fF (D)
for 1 - " p o o Hence ¢ (Fye L (T, m).

Foreverys,and s, € L (T, m)we put s,(¢) - sy(7)incase s,(1) - ¢ (1) -
Csol) - e UF)Y and we put si(f) s.f) for other r e 7 Assume s, <7 5 und
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s, = 5, . Then, using the strict monotonicity of @ (a, s) as a function of
s — s,(a); , we obtain

LSy Cp([v)‘wll,(f,m) o 2‘1[“1 “\ A ('p(f‘-)‘! LAT. ) »
(1, 0) — (0, S3)Ii£(z,,) fnlm, (1, 0) — (0, s;) EQ,) -
Proposition 3.1 foliows immediately from tnequalities (32).

Remark 5. YLet us mention that e)(F)  f{y_yyand ¢, (F) 4(f,*- FELD.

4, EXISTENCE OF A BEST ! ' ||z-SIMULTANEOUS APPROXIMATION

The following notions are important for the problem of existence of a best

- ‘p-simultaneous approximation.

The weak topology induced on a Banach space B by a set ¥ of continuous
linear functionals on B we call the W-topology.

We call a subset S of B locally W-compact if and only if the intersection
of § with every ball in B is W-compact.

We call a subset S of B W-nice if and only if the wtersection of every
closed convex subset of B with S is closed in the W-topology.

We use the notation SpanS for the closure of the linear hull of S C B. By
id: SpanS -» B we mean the identity operator.

Examples of Locally W-Compact and W-Nice Subsets of B.  Every closed
convex subset of a Banach space Bis closed in the W-topology with W B™*,
beciuse every convex closed set D C B and point b ¢ BYD arc scparable by a
bounded linear functional v e B* [17, p. 38]. if X is a Banach space, then
£ X*is locally W-compact with W == X C X** . B* [17, p. 66]. There-
tore in cvery reflexive Banach space B every ball is B -compact. Alse. every
compact subset in B is W-compact. Hence, a set S is locally -compact and
W-nice if:

(1) S s closed in the W-topology, id*(W) =. (SpanS)* and SpanS is a
reflexive Banach space (for example, SpanS is a uniformly convex Banach
space). In particular SpanS = L (F, m), where | < p <7 o0

(2) Sis a locally compact subset of B in the || - i topology and the W~
topology is Hausdorff on S.

Remark 6. Let J: B— A be the naturai embedding, Jb == e ) . Due to
(1) /is an isometry modulo multiplication by a constant C, . The mapping
J¥ A7 > B* 15 the restriction of e 4% to B and J*W')C W, where
W7oy YW, The Hahn-Banach extension theorem implies J*(W')y - W,
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Therefore J: B — J(B) considered as a mapping from B in the W-topology
into J(Bj in the W -topology is a homeomorphism.
We shall make use of the following

Lemma 4.1, Let S be a locally W-compact and W-nice subset of B. Then
the subsetr J(S) of A is locally W-compact, where W* - (J*)-' (W).

Proot.  Let us mention first of all that the intersection of a ball D, in 4 of a
radius r and center (A, d) e 4 with J(B) is a convex closed subset of J(B).
Using Remark 6 and the fact that S is a W-nice subset of 8 we obtain that
JUD, N J(B)Y) s a convex closed subset of B and J-UD,. N J(S))
J YD, J(B))y N S is a closed set in the HW-topology.

In addition, the inequality

roe A dY =0, 0) 0, x) g (A )
Gy lxig 1AL Gy = 0d, o G (33)

implies that the intersection D, N J(B) is a bounded subset of J{B) for every
r o 0and (A d)e A
Now the W-compactness of /1D, N J(S)) follows from the inclusion

JUD, " J(S)) C Da(B) N S. (34)

where R R(r, A, d) == (r -1 s A C)IC, - T diy and DyiB) is a ball of
radius R and center 0 in B, and from the closedness of J-1(D, N J(S)) in the
W-topology. Hence. using Remark 6, D, n J(S) is W-compact.

The main result of this section is

THEOREM 3. Ler S be a locally W-compact and W-nice subset of a Banach
space B. Then for every FF'C B and || - |, satisfying (1) there exists a best '} - ||~
simultaneous approximation of F by elements of S.

Remark 7. Theorem 3 is a generalization of Lemma 2.2 and Proposi-
tion 4.1 in [10} and Theorems 1 and 2 in [12] about the existence of a best
| “1eq-simultaneous approximation in the case when £ is a compact. The
restrictions on B and S in [10, 12] are: B is a strictly convex Banach space
and S is a finite-dimensional subspace of B, or B is a uniformly convex
Banach space and S is a closed convex set.

Proof. To prove Theorem 3 we consider the intersections with J(S) of
balls in 4 of radius r and center (1, 0). For every r > inf,_ |l(1, 0) — (0, 5)i .
= r,, the set D, N J(S)+ & and is W'-compact (sce Lemma 4.1).
Therefore the intersection

U= [} (D, J(S) 7~ oo (35)

r ‘/TU
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To complete the proof it is enough to mention that every point of J CJ(S)
considered as a point of S realizes a best [} - |[z-simultaneous approximation
of F by elements of S.

5. UNIQUENESS OF A BEST ! - [g(;)-SIMULTANEOUS APPROXIMATION

The following example is typical for nonuniqueness of a best | - {x(-
simultaneous approximation, provided B is a strictly convex Banach space,
S is a convex subset of B, and ! - {;. is a strongly monotone norm.

ExampLe. Let ¥V == L,(F, m) and B be a strictly convex Banach space.
Assume the following.

C.1. For some b, = b,, b, and b, from B, F - F, U F,. where F, C
[, -{beB|3xeR, x>>1 such that b — a - b, - (1 — )b}, F,Cly -

{beBidacR, o <0 such that b= a- by + (1 — &) - 1;2‘,. We use the
notation /- {pe B{3Ix e, such that b == x- b, - (1 — )b, and I
LU ).

Assume m{F;) —= m(F,). Then the function ¢(b) == lIl(1, --b)i.(y is constant

on 1.

Remark 8. The above example for F; —={f;} and F, -~ {/,} contradicts
Theorems 2.1 and 2.2 in [11] in the case of V' =/} .

The following examples illustrate notions which are important for the
problem of uniqueness of a best |l - :|.()-simultaneous approximation.

EXAMPLE OF STRONG MoNoToNICITY. The L, (F, m)-norm, | < p < o0, is
a strongly monotone norm if and only if the support of the measure m is
equal to F.

DErNITION.  The norm [] - ||, is strictly monotone on ¥ at a point ¢ € V' if
and only if for every i € V the inequality 0 << &(f) < (f) for all feF
implies || 1y <<l ¢l - Il - lly is strictly monotone if it is strictly monotone
on V at every point ¢ € V.

ExAMPLE OF STRICT MoNOTONICITY. Tt is easily checked that the supre-
mum norm is a strictly monotone norm if and only if F is compact. Moreover,
if F'is not compact, but for every b € B there exists f' € F such that || f' +
bllg = supsep I+ bllz, then i -], is strictly monotone on ¥ at every
point ¢ € pp(A). If the supremum norm is strictly monotone on V at every
point ¢ € pg(A), then the following condition holds.
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C.2. Forevery ¢;epp(d),j - 1,23, with i by [ duliy 1 s
and xe R, 0 <o <1, such that O <0 $y(f) =0« - ¢y(f) -+ (L — a) - ()
for all fe F, there exists f' € F satisfying ¢y( 1) - &o(S") - dy(f).

Indeed, strict monotonicity of || - 1) on  at every point ¢ < py(A) implies
the existence of an f" & F such that

Ly 5{“{}3 Sy o () o () o W) ()

©Sup (5 () Sup @)

fefF

gy (LX) (36)

Therefore, usingl ¢y - |y iy~ ulip, weobtain gl /') - - i(f) -
(1 — o) - ([} and, moreover, ¢, (1) - i, 1.2 30 0e, d(f)
bo( ) == $u(f).

Condition C.2 also holds in the following two examples.

(1y |-y is strictly monotone and strictly convex. in particular the
L (F, m) norm, where b <0 p < oo,

Using the existence of /' € F such that ¢,(f7) - weby(f1 + (1 -+ ) a1
and the equality ¢y = ¢, (otherwise & "¢y o (1 -~ 2) iy iy o [yl
T B A T TR v by i) we obtain ¢, (f)
G /1) = Pl £,

(23 1 - s the L(F, o) norm, the support of the measure s is equal
to F and Fis a connectad subset of B.

The strong monotonicity of 1 |, (s, tmplies that for every fa 7 o)
xcddfy (- w) e(f). The continuity of (/). ; 1.2, and the
connectivity of F imply the existence of an /' & F such that (/) - ()
(otherwise cither ([ << du(f) forall f& For ${fy < () forall fe F. So
in both cuses "¢y [ 7 by ) Hence di(f7) - ([ 5

We shall make use of the following

LemMa 5.1, (a) Let B be a strictly convex Banach space and | - 'y be a
strongly monotone nornm. If the function ¢(b) =1 (1, —b¥. . is not strictly
convex on B, then C.A holds and ¢ is strictly convex on B\l. Moreorver, ¢ is
linear on I. If V is a strictly convex Banach space, then A is strictly convex.

(b) Let B be a strictly convex Banach space and i - |, be a monotone
norm. Assume C.2 holds. Then for every r ~- O the function ¢(b) == "(1, - b} 0
is strictly convex on S, == {be B| ${by - - ¥} C B, i.e., (x- by -+ (1 — x)- b))
<Coat gty o (0w dthyy, 0 <n wx I A, for oevery By o ohe, by oand by
from S, .
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Proof of Statement (a). For every ~ Bek and b;eB,j=1,2, the
inequalities

Fal, ’_bl) + B(l 7[)‘2)531;(1*) o ?Pn(i\'(l- '_bl) - ,8(]» “'*1,72))%
S pp(l =by) o+ B palUd, =Bl
L =Dy /35 IS P Y ST
(37)
follow from the monotonicity of = - {;-.
Assume that function ¢ is not strictly convex on B; i.e., that there
exists x € R, 0 < « << 1, by and b, from B. b, +: b, such that

Blo by 2 (L — ) by) o by = (] - ) - b(by). (38)

Then setting 8 == 1 — « in (37) and using the strong monotonicity of I' - i,
we obtain

e by e (e xy i = by s = (v b (= ) by (39)
for every f'e F. Therefore for every f'e Fthere exists p, € & such that
f=booplf by o by 0 (40)

(uy = | as by = by). Since n - ipy - (L) = apy - (1 — o)l by
substituting (40) into (39)), u, is real and positive. Putting e, = (1/(I - 1)
we obtain /' e, by (1 — €) by e, .21 or € =10, Hence C.1 holds
with
b, - b, and by = by . (41)

Notice  that  the equation | ofl, —Dy) -+ (I — )L b)Yy
ac L =blegy - (T—a) 1 (1, = b,) iz coincides with (38). Thercfore, using
the triangle inequality for ' - i) . we obtain (38) for all 6 - x -7 1. Hence
H(b) is linear on I. We have deduced from (38) that the eclements of F,
b, == by, and b, = b, belong to the same real line / in B. Hence (38) holds
onlyifb; e/, j =1, 2. This proves strict convexity of () on B/

Assume now that |' - 1. is strongly monotone and strictly convex. Let

WAy dy) = Ay doYlqy = AL dDleay - A < A kG- {42)
Using (42), the strict convexity of I' - I, and
WA dy) o+ Ay, d_’)i.‘lz’(l") == || Pn(('/\l LA Ay, A
< pal(Ay « dy)) =+ pal(Xy s )]y (43)

AL A eoy 4 AL, d
we obtain

IAS +dy + Af - dolg = (XS +Hdilis 1S+ dellp (44)



236 PIERRE D. MILMAN

tor every fe F. Since | - ig 1s strictly convex, for every f e F there exists p; & A
such that

A A dy = A e dy) or Af = dy == 0, (43)

Since j p; - 1} -+ pyy - 1, pyis real and positive. Also, the strict convexity
of i| - iy implies the existence of » € R such that either

WA - dyiy v s A dy g torallfe Fordyf - d, - Gtorallje F. (46)
Combining (45) and (46) we obtain that either (A;.d,) and (A, d,) are
linearly dependent or the cardinality of F is 1. The latter contradicts our
assumption that F i1s not a one point subset of B. This proves statement ().

Proof of Statement (b).  Assume that the function ¢ is not strictly convex
on S,ic, thereexist x= R0 <7 o - Lohrand byin B by . by, such that (38)
takes place and » - $(b)  ¢ihy). Let () foob w120 and
(]S;;(f) U (v "71 ] ~) by p . Then

Lyl ol by - (1 ) - by) b)) b, S 2
and (47)
0 ‘ﬁ?”) S 9151(/‘) 4 (1 Y ‘[’:(f)

Applying C.2 we find /" € F such that

N —=bylg = bl = (v by - ) byl 0 <o 1

(48)

Therefore, using strict convexity of I i 5 . weobtain. f° - by i i f  — by 0.

hence b, == b, , which contradicts our assumption. This proves Lemma 3.1,
The main result of this section is

TueoreM 4. Let S be a convex subset of a strictly convex Banach space B.

(ay If | -\ is strongly monotone norm, then for every FC B either the
set S* of all best |; - ||, n-simultarneous approximations of F by S is a one point
subset of S or S* is an interval and C.1 holds with S* = I'U {b, ; b,}.

(by I/l - I'y is monotone and C.2 holds, then for every F C B there exists
at most one best |, - |\puy-simultaneous approximation of F by elements of S.

Remark 9. Statement (b) of Theorem 4 is a generalization of
Propositions 3.1 and 4.1 in [10], Theorems 1 and 2 in [12] and Theorems 2.1
and 2.2 in [11] (see Remark 8) about uniqueness of a best ! - .-
simultaneous approximation of F by elements of $ in the case when £ is
compact and || - || is the supremum norm (in [12]), or Fis a two point subset
of Band V ==/, (with 1 = p <Z oc in [11] and p -- oo in [10]). The restric-
tions on Band Sin [10-12] are: B is a strictly convex Banach space and S is 2
finite-dimensional subspace of B, or B is a uniformly convex Banach space
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and S is a closed convex subset of B. Our assumptions on B and S allow B
to be a strictly convex Banach space and S to be a convex subset of B.

Proof of Theoremm 4. To prove Theorem 4 it is enough to mention that
the strict convexity of the function &(b) == (1, 0) — (0, b)Yy on S, =.
{b < B ¢(b) = r} and the convexity of .S imply the existence of at most one
best approximation of (1, 0) by elements of the convex subset J(5) of A.
Hence. statement (b) follows from Lemma 5.1(b).

To prove statement (a) assumc S* contains two clements b, and b, .
hy by, Then & is not strictly convex (because b -« by - (1 - )b,
S for all x, O<Cwo =1, and Pla-by (1) by) - plhy) -
(b~ v - Plby) = infg dls) = dlo - by -~ (1 -~ &) - by) imply Eq. (38)).
Therefore (see Lemma 5.1(2)) condition C.1 holds, ¢ is strictly convex on
Bl and ¢ i1s constant on /. Moreover, by - byel.j-= 1,2 (see (41)). Hence
S*C 1 Since $* is convex together with S, $* is an interval. Choosing b, and
h, to be the ends of S* we obtain S* - 1 U b, : b,}.
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